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INTRODUCTION

WARNING: This class will be unlike any other math class you have ever taken. Most people who have
taken this class �nd that to be a good thing. I hope you will too ! But I just need to let you know to enter
here with an open mind and, as much as possible, without preconceived notions about mathematics. Also,
many people take this class having heard from a counselor or friend that it is an easy math class. Well, it
might be \easier" than calculus, depending on your de�nition of the word \easy." I would say most people
�nd the class intriguing and di�erent but not easy. It is a col lege-level transferable mathematics class after
all, so please do not enter with any delusions of ease or you will only be doing yourself a disservice. That
said, I think you'll be successful and also really enjoy the class if you come at it with a bit of curiosity, an
open mind, and a readiness to work.

For most students taking this course it is a terminal class - not meaning it will kill you but that it is the
last math you ever have to take. Before you leave your mathematics career behind it's important that you
know what Math (capital M) really is. It is NOT just crunching numbers and solving forx, far from it! It
is fractals and time time travel and logic and in�nity and bey ond! My vision for how I approach this class
is well-expressed by two authors that I'll be paraphrasing/quoting below.

As a math teacher I'm often asked \Why do I have to take math?" or \What is math good for?" This
often comes up when things get particularly stressful, suchas when algebra students are learning long di-
vision on polynomials. I think the answer the person is hoping for is a speci�c justi�cation of that very
speci�c topic and how exactly he or she will use that one item on the job later in life. Math is certainly very
applicable and practical. Without it we wouldn't have cell p hones or airplanes or skyscrapers or television
or credit cards or computers or pace-makers or medical imaging or much else. Most people want to see math
as a tool box and know how touse each tool inside the box. Really, math is much more than that and much
more important than that. Yes it is applicable, but more than that it is a way of thinking and a way of seeing.

Paraphrase from Ian Stewart'sNature's Numbers pp. 27-29:

How mathematics earns it's keep is through practical applications. Our world rests on mathematical
foundations, and mathematics is unavoidably embedded in our global culture. The only reason you don't
always realize just how strongly your life is a�ected by mathematics is that, for sensible reasons, it is kept as
far as possible behind the scenes. When you go to the travel agent and book a vacation, you don't need to
understand the intricate mathematical and physical theories that make it possible to design computers and
telephone lines, the optimization routines that schedule as many ights as possible around any particularly
airport, or the signal-processing methods used to provide accurate radar images for the pilots. When you
watch a television program, you don't need to understand thethree-dimensional geometry used to produce
special e�ects on the screen, the coding methods used to transmit TV signals by satellite, the mathematical
methods used to solve the equations for the orbital motion ofthe satellite, the thousands of di�erent applica-
tions of mathematics during every step of the manufacture ofevery component of the spacecraft that launched
the satellite into position. When a farmer plants a new strain of potatoes, he does not need to know the sta-
tistical theories of genetics that identi�ed which genes made that particular type of plant resistant to disease.

But somebody had to understand all these things in the past, otherwise airliners, televisions, spacecraft,
and disease-resistant potatoes wouldn't have been invented. And somebody has to understand all these
things now too, otherwise they won't continue to function. And somebody has to be inventing the new
mathematics in the future, able to solve problems that either have not arisen before or have hitherto proved
intractable, otherwise our society will fall apart when change requires solutions to new problems or new
solutions to old problems. If mathematics, including everything that rests on it, were somehow suddenly to
be withdrawn from our world, human society would collapse inan instant. And if mathematics were to be
frozen, so that it never went a single step farther, our civilization would start to go backward.

Mathematics is not just a research-driven endeavor that is developed with a speci�c goal in mind. Often
mathematical play out of curiosity gives rise to a profound and unexpected application. In fact, one of the
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strangest features of the relationship between mathematics and the \real world," but also the strongest, is
that good mathematics, whatever its source, even if it came from mere curious play, eventually turns outto
be useful. For instance, the mathematical study of knot theory originated when scientists thought atoms
might be best described as knotted vortices in luminiferousether. Well, it turned out that atoms are nothing
like knots, but mathematicians got curious and kept playing with knots even though they had no application
at all. Decades later, once chemistry, biology and physics had progressed - for instance once DNA had been
discovered - knot theory was found to have many applicationsincluding to the workings of DNA. In the
1600s there was an interest in the vibration of violin strings. Three hundred years later that led to the
discovery of radio waves and the invention of radio, radar, and television.

Curiosity in mathematics, playing with things that may or ma y not seem to have an application, often
ends up resulting in important breakthroughs that were entirely unpredictable. There is a dance in mathe-
matics between play and application and both are equally important.

Paraphrase from Arthur Michelson's article Why Math Always Counts (LA Times, December 26, 2004)

Math is not just about computing quadratic equations, knowing geometric proofs or balancing a check-
book. And it's not just about training Americans to become scientists. It has implicit value. [Math] is
about discipline, precision, thoroughness and meticulous analysis. It helps you see patterns,
develops your logic skills, teaches you to concentrate and t o separate truth from falsehood.
These are abilities and qualities that distinguish success ful people. Math helps you make wise
�nancial decisions, but also informs you so you can avoid fal se claims from advertisers, politicians
and others. It helps you determine risk. Some examples:

** If a fair coin is tossed and eight heads come up in a row, most adults would gamble that the next
toss would come up tails. But a coin has no memory. There is always a 50-50 chance. See you at thecasino ?

** If you have no sense of big numbers, you can't evaluate the consequences of howgovernment spends
your money. Why should we worry? Let our kids deal with it

** Enormous amounts of money are spent on quackmedicine . Many people will reject sound scienti�c
studies on drugs or nutrition if the results don't �t their pr econceived notions, yet they might leap to action
after reading news stories on the results of small, inconclusive or poorly run studies.

** After an airplane crash , studies show that people are more likely to drive than take aplane despite
the fact that they are much more likely to be killed or injured while driving. Planes are not like copycat
criminals. A plane is not more likely to crash just because another recently did. In fact, the most dangerous
time to drive is probably right after a plane crash because somany more people are on the road.

The precision of math, like poetry, gets to the heart of things. It can increase our awareness. It is not
possible to really understand science and the scienti�c method without understanding math. A rainbow is
even more beautiful and amazing when we understand it. So is alightning bolt, an ant or ourselves. Math
gives us a powerful tool to understand our universe. I don't wish to overstate: Poetry, music, literature
and the �ne and performing arts are also gateways to beauty.Nothing we study is a waste. But the
precision of math helps re�ne how we think in a very special wa y.
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MATHEMATICIAN PRESENTATION

INTRODUCTION Of the six units we will cover in class the �fth one is a history of math unit. The
way we will cover this unit is that each student will research one mathematician and give a presentation
about that mathematician's life and work. This presentation will be worth 100 points.

GOAL You are to share about your mathematician in such a way that your classmates get a clear,
accurate and memorable presentation of his or her life and work. The math history section will be on the
�nal exam, so do a good job of teaching your classmates well!

GETTING STARTED First you will need to select a mathematician. You'll want to get started
with this right away so that you make sure you �nd someone that will work well for you - someone whose
life or work you're interested in - or someone whose life has alot of drama to talk about or whose work
is easy for you to explain. You need to choose one of the mathematicians from the list provided on page
8 here. Resources for making your decision include links on my website and books at the MJC library, as
well as Google searches, of course. Each mathematician may be chosen by only one student per class, so
choice is on a \�rst come, �rst served" basis. Once you make a selection email your choice to me. Your
selection is due on or before �rst meeting of the third week ofclass. If you have not emailed me a choice by
then, I will send around a sign-up sheet that day so that you can choose one of the remaining mathematicians.

REQUIREMENTS Your presentation must involve the computer. Powerpoint, Prezi, or other such
programs are excellent choices. If you are not sure how to useone of these programs, seek help (early) at a
computer lab on campus or in my o�ce. In addition to a computer -based presentation you may show work
on the board as well if you would like to do so. Your presentation should bebetween 5 and 10 minutes
long. Fewer than 5 minutes isn't long enough to get enough information across, but more than 10 minutes
will push into someone else's time. We only have 3 days for about 40 presentations, so you need to stay
within the time frame. Use appropriate resources (i.e. books and/or journals as well as trustworthy internet
sites - you may use Wikipedia in addition to other resources,but that cannot be your only resource or your
main resource!). You need to present both about your mathematician's life and work, and part of that needs
to be a clear explanation of one piece of the person's mathematical work. See below for details of due dates
and scoring.

DATES

Choice of Mathematician DUE: Week 3 Meeting 1
Questions 1-3 (page 9) DUE: Week 6 Meeting 2
Outline of presentation (page 10) DUE: Week 10 Meeting 2
Presentations BEGIN: Week 12 Meeting 1 (conitnuing until �nished)

Note : EVERYONE should be ready to
present on the �rst day!!

SCORING This project is worth a total of 100 points, which is equivalent to the value of a test. The
points are earned (or lost) as follows:

1. 30 points : following directions and meeting the deadlines for turning in topics and outline (@ 15 pts.)

2. 10 points : using a computer program such as power-point or prezi e�ectively to present your work

3. 10 points : speaking slowly enough, clearly enough, and loudly enoughto be heard

4. 25 points : sharing interesting and accurate biographical data in an engaging manner

5. 25 points : clearly and correctly explaining at least one aspect of theperson's mathematical work

6. deductions taken for going overtime or under-time, certain mispronunciations, negativity, avoidable
technological glitches, or being absent on your day to present.
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POINTS & DEDUCTIONS This should be an easy A for you if you simply follow what is asked and
make a good-faith e�ort. Keep in mind that this is worth 100 po ints, which is equivalent to a test, and this is
totally in your control. Also keep in mind that as you work on i t you have librarians who are happy to help
you �nd good resources, and you may come in and ask me questions as you put this together (as long as you
do so before week 11 of the semester - as I do not want to facilitate last-minute work). If you simply �ll in
pages 9 and 10 in this document and turn them in properly �lled out and on time you earn 30 points, which
is equal to 3 letter grades on a test! Take advantage of all this!! My hope is that everyone will get 100%. So I
also include a heads up aboutdeductions . If you do even not bother to �nd out how to pronounce the name
of your mathematician, points will be deducted. I will also take o� points for mispronuciations of signi�cant
places in your mathematician's life (city of birth, univers ity taught at, etc.). If you are not sure about a pro-
nunciation, just come ask me! Easy enough! Deductions will be taken for each minute (or part of a minute)
below or above the 5 to 10 minute requirement. Also, I have noticed in recent years that when some people
get nervous giving a presentation they say self-deprecating things, such as, \Sorry this is so stupid" or \Sorry
this is so boring" or \Well, I didn't really study this, so I do n't know what I'm talking about." You've got
11 weeks to prepare - don't let it be boring, and if there's something you don't understand, come in and ask
me! If you still don't feel good about your presentation on the day you give it, just put on a smile and fake it!

CORRECT PRONUNCIATIONS OF COMMONLY MISPRONOUNCED WORDS :

� Euler = OY-ler ( not YOU-ler)

� Erd}os = air-dish ( not err-dose)

� Srinivasa = shree-nee-vah-sah

� Cambridge = came-bridge (not camm-bridge)

� K•onigsberg = con-igs-berg is acceptable (though with the umlaut it's really more like kerr-nigs-berg)

� Ecole Polytichnique = ay-cole poe-lee-teck-neek

� G•ottingen= gur-ting-in

� Vassar = v�a-sir ( not v-s�ahr)

� treatise = trea-tiss ( not trea-tize or trea-tease)

RESOURCE SUGGESTIONS (a few of many!!)

� Your textbook for this class has lots of short bios!

� Mathematicians are People Tooby L & R Reimer (in MJC library)

� Mathematical Peopleby D. Albers (in MJC library)

� A History of Mathematics by C. Boyer (in MJC library)

� Great Feuds in Mathematics: Ten of the Liveliest Disputes Ever by H. Hellman (in MJC library)

� The Greatest Mathematicians of All Time trustworthy website linked on our class page

� MacTutor History of Mathematics: Indexes of Biographiestrustworthy website linked on our class page

Most of the above are compilations; look also for individualbiographies. For instance My Brain is
Open and The Man Who Loved Only Numbersare great bios of Paul Erd}os. An excellent (and short!) new
biography out of Fibonacci isThe Man of Numbers. For Galois there is the classic biographyWhom the Gods
Love (by Infeld), and for Lewis Carroll (yes, he was a mathematician!), there is the recent Lewis Carroll
in Numberland: His Fantastical Mathematical Logical Life. Be careful about using feature movies about
mathematicians - exampleA Beautiful Mind , which is about John Nash; it's a great movie, but it is very
�ctionalized! However, there is a PBS presentation about that movie and his life that you can probably �nd
online; it's called A Brilliant Madness . There are also NOVA presentations about Ramanujan and Wiles.
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OTHER INFO - HINTS, TIPS, POINTERS AND WARNINGS

� Because we have 40 presentations and 3 days,timing is an issue. Practice at home to make sure
you are within the 5 to 10 minute limit. (Points will be deduct ed if you are outside those boundaries.)

� Your time up front is short. Focus on interesting parts of the mathematician's life and on the one
piece of mathematics you'll be sharing with us.DO NOT list 5 schools he attended and 10 books she
wrote and 15 awards he received and the 7 schools she taught at- imagine hearing 40 such lists in a
row - not memorable stu�!!

� Be alert to presentation common sense . For instance, don't use small font or put so many words
on one slide that the class can't read them. Because your classmates will be tested on this, they will
be stressed out if they see 100 words on a slide, and they're trying to write them all down. Use slides
to highlight important information but not as a way to write o ut every word you want to say. Do
include some pictures and/or equations and/or diagrams and/or maps to help the class understand
your mathematician's life and work.

� Technology issue #1 - technology can be `glitchy,' so be sure you have multiple ways to access
your presentation. For instance email your presentation toyourself AND bring it in on a ashdrive.
Sometimes the internet doesn't work; sometimes a computer decides not to like your drive, so have at
least 2 methods of accessing your presentation. If you do notdo so and your presentation won't load,
you will lose points. (Note that you should email your presentation to yourself, not to me. If I have
80 power-point presentations sent to my inbox - well - yeah - that's just not going to work.)

� Technology issue #2 - we havePC s in the classroom. If you are working on aMac , be sure to save
your presentation in such a way that it will play on a PC (or use a computer in an MJC lab to create
your presentation). Incorrect formatting is also an avoidable mistake, and points will be taken o� if
your presentation won't run due to a choice that was within your control such as this.

� Yes, you are expected toEXPLAIN some math . That doesn't mean you're going to give a full
blown math lecture. Choose a small piece of the person's work, or, if you choose someone like Sir
Isaac Newton, who is a father of calculus, go ahead and give usan overview of what calculus is about;
you'll be surprised how easy an overview like that is, and I'mhappy to help (as you talk to me before
week 11)! Don't just say, \He invented Venn Diagrams" or \He' s the Father of Calculus" or \We did
Cramer's Rule in Math 90, so I know you already know it." Help us understand these things and why
they're important or what they do or where they came from or why.

� You are welcome to do pretty much (within reason) whatever makes you comfortable presenting .
You may sit down or stand up. You are more than welcome to use note-cards. You can give the class
a handout (if you think it will help them and take pressure and focus o� of you). This isn't a speech
class. I won't be grading on eye-contact and posture and suchthings, but one way or another you need
to get the information across clearly.

� Realize that prior to the 1500s or so not much information waskept about the lives of individual
people, unless they were royalty or VERY famous or something, and sometimes not even then! If you
choose a mathematician from ancient times and can't �nd muchinformation about that person's
life , tell us whatever little bit is known or guessed about his or her life, and also just tell us about life
and culture at that time, which is also a way of telling us about that person's life.

� Some of the more recent mathematicians can be found onYouTube ! If you �nd a clip of your
mathematician you're welcome to include it, but it shouldn' t be more than 1 minute long.

� If your mathematician had a major conict with another one on our list (such as Newton and Leibniz
or Cantor and Kronecker or Tartaglia and Cardano), be sure toat least mention that and maybe even
really get into that! One book in the MJC library is all about t hese famous mathematical feuds!!

REASSURANCE I hope all the information in these pages hasn't overwhelmedyou or stressed you
out. I'm just trying to get you all the information (and advic e) you need. Most students get 100% on this or
nearly 100%, and I'm sure you can too if you simply take it seriously and don't put it o� to the last minute.
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MATHEMATICIANS TO CHOOSE FROM

Your choice of mathematician does need to come from this list. There is a lot of variety here going from
ancient times to the present day - including men and women - including a variety of mathematical specialties
- and including a variety of nationalities. If you look closely you may recognize some names - especially those
of a couple of famous writers and a current actress who also happens to be a mathematician! Remember
that choices are `�rst come, �rst served,' so as soon as you make a selection email me your choice.In your
email be sure to include your name, the name of your mathemati cian, and either your class
section number or the time your class starts. I need to know who you are and what class you are in
or I cannot properly record this!

Thales Pythagoras Zeno of Elea

Euclid Archimedes Eratosthenes

Diophantus Hypatia Omar Khayyam

Fibonacci Nicolo Tartaglia Girolamo Cardano

John Napier Rene Descartes Blaise Pascal

Isaac Newton Gottfried W. v. Leibniz Gabriel Cramer

Leonhard Euler Maria Agnesi Sophie Germain

Carl F. Gauss Nikolai Lobachevsky Carl Jacobi

W. R. Hamilton George Boole Leopold Kronecker

Bernhard Riemann Lewis Carroll John Venn

Georg Cantor David Hilbert Srinivasa Ramanujan

Gaston Julia John von Neumann Piet Hein

Kurt G•odel Grace Hopper Paul Erd}os

Benoit Mandelbrot John Nash Roger Penrose

Edward Thorp Andrew Wiles Danica McKellar

COMMENT For the list I have provided here I have chosen mathematicians who either had very in-
teresting lives, did math that is reasonable for you to look into, and/or were extremely major �gures in
mathematics. Some of their lives are very`interesting' , by which I mean quirky and eccentric perhaps to
the point of madness. This does not mean most mathematiciansare crazy! I just tried to provide choices
for you that would be especially interesting and memorable!

MOST IMPORTANT For the 5 or 10 minutes you are up front, you are the teacher. Your mathe-
matician is real person who lived (or is living) a real life. During the semester, as you prepare, look at it as
if you are adopting him or her and then telling your classmates about a friend youcare about!
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MATH 101 Name:

Mathematician: SECTION #:

DIRECTIONS: Be sure to read all requirements for the mathematician presentation in your Extended
Syllabus. You will turn in this paper twice, once during week 6 with the three questions on this page
answered, and once during week 10 with the back side �lled out.

In recent years I've gotten responses to the questions belowthat are unrelated to what I'm asking.
DON'T MAKE THAT MISTAKE! READ THE FOLLOWING SENTENCES CAREFULLY
BEFORE RESPONDING IN ORDER TO BE SURE YOU ARE RESPONDING ACCU RATELY.

1) In a few brief sentencesexpresstwo or three interesting stories, events or anecdotes you will be sharing
about your mathematician's LIFE aside from his or her work (i.e. DON'T write in this space about his
or her mathematical work or teaching or education).

2) In the space below use one full sentenceto tell me the ONE speci�c major mathematical contribution
of your mathematician that you will be explaining to the class. Be sure to choose a mathematical topic this
person worked with that you can explain! (You can tell the class about more than one during your talk if
you want to, but I just want to know about one right now.)

3) Put the YEAR of your mathematician's birth in the blank at r ight:

*************************************************** ***********************************

SCORING - THIS SECTION FOR INSTRUCTOR USE ONLY

� Top front of this page �lled out CORRECTLY by due date: 0 15

� Back of this page �lled out by due date: 0 15

� Presentation - powerpoint or prezi 0 10

� Presentation - audibility 0 10

� Presentation - biographical content 0 25

� Presentation - mathematical content 0 25

� Point deductions (see directions) minus

TOTAL:
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PRESENTATION OUTLINE

Mathematician: Student Name:

DIRECTIONS: Write out an outline of your presentation (using bullet points only - not full par agraphs).
I am looking for all the topics you plan to present in the order you plan to present them. Write this out
below on the left side ONLY . I will be using the right side to take notes and score your presentation as
you speak. MAKE A COPY for yourself; this will not be returned before presentations, though you are
welcome to come into my o�ce and go over it with me in person if you'd like.
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WHAT IS MATH?
Begin working on this as I am taking attendance and doing add cards. We will go over it later in class today
and also at our next class meeting. When we go over it togetherI will be using it to express my view of
mathematics, a view that I hope will be helpful to you. Once this is returned, keep it in your notebook
throughout the semester as a reminder.

1) Without lifting your pencil from the paper and without ret racing any of your lines, connect all 9
dots below using exactly 4 straight lines.

2) Determine the common word or phrase represented by each box below. For example, the �rst box
represents the phrase \reading between the lines."

reading

T
O

U
C

H

STAND
I

MAN
BOARD

0
M.D.
Ph.D.

BA

3) How many SQUARES of any size are there in this diagram? The answer isnot 25, and it is not
26. It is larger than either of those numbers. Remember theSQUARES can be of any size, and your goal is
to �nd and count all of them. (Recall that a square is a four-sided �gure that has the same height and width.)
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GRAPH THEORY
IN CLASS ACTIVITY

The following �gures are all graphs . A graph is called traversable if all of the edges can be traced
without lifting your pen from the paper and without going ove r any edge more than one time. Determine
which of the following graphs are traversable and record your information on the next page. NOTE : Some
graphs that are traversable may not seem so at �rst. For instance, with �gure 2 if you being at the lower
left-hand vertex, you cannot traverse the graph, but this does not mean it is not traversable. If you begin
at the upper left-hand vertex, you can easily traverse this graph. Before stating a graph is not traversable,
make many attempts starting at di�erent points, taking di�e rent turning until you are fully convinced it is
not traversable. Compare with others around you to see if they agree.

�gure 1 �gure 2 �gure 3 �gure 4

�gure 5 �gure 6 �gure 7

�gure 8

�gure 9 �gure 10

�gure 11 �gure 12
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On the previous page you were asked to determine if each of thegraphs pictured was traversable. Record
your �ndings on this sheet in column 2 of the chart. Then go back to handout one and determine for each
graph how many even vertices it contains and how many odd vertices it contains, and record that
information here as well. Then use the chart to look for a pattern in order to determine in a way other
than trial and error whether a graph is traversable or not. NOTE: A vertex is odd if it has an odd number
of edges connecting to it, and it is even if it even if it has an even number of edges connecting to it.

GRAPH TRAVERSABLE? # of ODD # of EVEN Does is matter
(Yes or No) vertices vertices where you start?

�gure 1
�gure 2
�gure 3
�gure 4
�gure 5
�gure 6
�gure 7
�gure 8
�gure 9
�gure 10
�gure 11
�gure 12

With the graphs you were working with on Graph Handout 1, you were using trial and error to decided if a
graph was traversable or not. But there are problems with this method; not only is it tedious for
complicated graphs, but unless you can be sure you've tried every possibility you can never be con�dent in
saying a graph is not traversable.

Use the chart above to look for a pattern. Find a pattern that you can use to tell you whether a graph is
traversable or not based only on this information and not on having to do trial and error.

Now look again at the pattern, if a graph is traversable, how can you tell whether or not where you start
matters? And, if it does matter where you start, how can you tell where to start?

CHECK to see if your answers above work! Create your own graphs similar to the ones you've been
working with; create di�erent con�gurations of them with di �erent numbers of even and odd vertices and
see if your answers work. If so, congratulations! If not, rethink your answers and tweak them as needed.
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1) The following diagram is of a 5-room house. In the large blank space at the bottom of this page, draw
a graph consisting of vertices and edges to model this diagram. Your vertices should represent locations,
and your edges should represent connections. Use your graphto determine if it is possible to visit every
room using each door exactly once. If it is possible, draw this path on the \house" to show the answer. If
it is not possible, explain why in a mathematically precise way.
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2) Here are two additional \houses." The question you're being asked regarding each of these is the same
as in problem #1 on the previous page. Be sure to address each part of the directions.

3) Below is a situation similar to that of the Konigsberg Brid ge Problem that was discussed in class and
in your textbook. Use what you know of graph theory to determine if an Eulerian trail or Eulerian circuit
exists here. Explain your answer using one or two full sentences using the ideas of graph theory.
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4) In class we created a graph that gave all the moves (and solutions) for a 2-disk Towers of Hanoi
puzzle. Use the space below to create aGRAPH for 3-disk Towers of Hanoi. It is a graph that is being
asked for here,not pictures of various stages of solving the puzzle - although you may want to draw
pictures of the steps on scratch paper to help you with your work.
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5) There is a legend that goes with theTowers of Hanoi puzzle, and that is that in an Asian temple
monks have the task of solving this puzzle with 64 disks. Theywork at it in shifts, working around the
clock and moving one disk per second; they never make a mistake in their moves. The legend is that when
they have completed the task the world will end. How long will it be from the time they began until the
time they �nish? (A java applet that you can actually play of t his puzzle is at the link below.)

http://www.mazeworks.com/hanoi/index.htm
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GRAPH THEORY (NETWORKS)

IN CLASS ACTIVITY

Imagine the vertices in each of the three situations below (triangular, square and pentagonal) to represent
objects that need to be connected by wires. In each case, whatis the least amount of wire needed to
accomplish this? Use a ruler with metric measure so that you can determine this in millimeters for greatest
accuracy. Try di�erent con�gurations of wiring, measure each, and record the length in millimeters. Some
questions to think about are the following. Does there need to be a path or circuit involved in order to
connect these items and have electricity owing to each? Might we be able to \patch" the wires together
somewhere to help us use less wire? (If so, this would basically mean adding another vertex. Would that
help shorten the total distance?)

mm mm mm

mm mm mm

mm mm mm
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GRAPH THEORY (MATHEMATICAL MODELING)

IN CLASS ACTIVITY

Instant Insanity is a puzzle that was �rst marketed by Parker Brothers in 1967. It consists of four cubes,
with each face painted one of four di�erent colors (we'll be using red, blue, yellow and green). The object
of the puzzle is to stack the four cubes one on top of the other,so that on each side of the stack each cube
face is showing a di�erent color - in other words so that each of the four colors shows on each side.

QUESTION: In general, how easy would this be so solve by trialand error? In other words, how many
di�erent ways can you arrange the cubes while stacking like this?

The squares below are provided as a place for you to put your cubes so that you can keep track of them
and not lose your place.

CUBE A CUBE B CUBE C CUBE D

Draw a descriptive graph below for each of the cubes above.

CUBE A CUBE B CUBE C CUBE D
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Create a composite graph below containing all four graphs from the last page. Label each edge according
to the cube it originally came from (A, B, C, or D) - or, rather t han labeling, use 4 colored pencils to
record which edge came from which cube.

Now, use the edges from the complete graph above to make two sub-graphs below. Each sub-graph should
have one edge from each cube (for a total of 4), and each vertexshould have order 2 (which will mean that
each color is used twice - once each front and back, once each top and bottom).

FRONT/BACK TOP/BOTTOM

Use the information from the subgraphs above to write up a chart describing the solution. Make sure that
each column has each color listed once only. Rows can have repeated colors.

CUBE FRONT BACK TOP BOTTOM

A

B

C

D
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GEOMETRY (POLYGONS)

6) Using the formulas we developed in class, �nd theangle sumand the individual angle measurefor each
polygon listed in the table below. Note that we are assuming all of these polygons to be regular. You may
be able to simply copy much of this work from your notes, but also determine and �ll in the other values
that we did not cover.

SHAPE POLYGON ANGLE SUM INDIVIDUAL ANGLE MEASURE

TRIANGLE

QUADRILATERAL

PENTAGON

HEXAGON

SEPTAGON

OCTAGON

NONAGON

DECAGON

UNDECAGON

DODECAGON

Space for scratch work:

23



7) Extend the work we did in class with angle measure to �nd the measure of an angle at the tip of a
regular pentagram (as noted with an arrow). HINT: The answer is NOT 60o. Notice that it is the
pentagon that is regular, but this doesn't mean necessarilythat the triangle is!!

8) Given the stellated heptagon below �nd the measure of one point of the star. Note that the
center is a regular heptagon .
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GEOMETRY (TESSELLATION SUPPLEMENT)

9) Using what we did in �nding angle measures of polygons, your chart on page 19, and our in-class work
on determining which polygons tile (tessellate), �ll in the chart below:

SHAPE INDIVIDUAL ANGLE MEASURE WILL IT \TILE" (yes/no)

TRIANGLE

QUADRILATERAL

PENTAGON

HEXAGON

SEPTAGON

OCTAGON

Our in-class explorations with polygons and angle-measureallows us to explore a concept that is both
aesthetically pleasing and used in art and is also very practical and used in construction and home
improvement. This concept is called tessellation, which means tiling. To tessellate is to tile a surface in
such a way that there are no gaps or overlaps. Dutch artist M. C. Escher is known for his tessellations. As
part of your assignment you will be asked to create your own tesslation. Below are examples students have
created in my previous classes, and on the following pages are examples of M. C. Escher's work.
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Figure 1: M. C. Escher Tessellations: Basic Samples

Not only did Escher create works that were strict tilings, but he also incorporated these tilings into other
images. See �gures below. As complex and amazing as they are,all of Escher's tessellations have a basic
geometric shape as their foundation, a polygon that could beused on its own for tiling. These shapes were
then altered to become more interesting shapes, such as birds or horses or lizards, but in such a way that
they would still tessellate. What shapes can be used as a basis for this? Think about tiling you've seen in
daily life rather than in art, tiling you've seen in oors and counter-tops. These same shapes that can be
used in such a basic way as tiling a counter can be altered to create something as fanciful as these works of
art.
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Here is a description of how a regular polygon that is able to be tessellated can be transformed into
another shape that also tessellates. Notice how a piece was cut out of the middle of side AC and taped to
the middle of side AB to make a head { and also that parts of sideAB were cut and then taped to the
edges of side AC to make longer `wings' or `�ns.' Then part wascut o� of side CB to create a tail and
another `wing' or `�n.'

Figure 2: Sample Directions for a Tessellation Based on a Triangle

10) On the next page create your own tessellation in the box provided (or create a tessellation on a
separate page and paper-clip it to the next page when you turnin your homework journal). HINT : Cut a
template out of cardboard or sti� paper to trace around over and over.
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11) A picture is shown above of a tessellation that includes more than one type of regular polygon. This
sort of tiling is called a semi-regular tiling. Using this picture and the angle-measure information you have
�lled in in the previous two charts, list as many combination s of regular polygons as you can that result in
such a semi-regular tiling. Draw pictures of these tilings in the space at the bottom of the page, and �ll in
the chart below. The �rst line has been �lled in for you as an example. It represents the information about
the tiling you see at the top of this page.

NUMBER AND TYPE OF POLYGONS USED SUM OF ANGLES AT EACH INTERSECTION

2 octagons and 1 square 2 � 135 + 90 = 270 + 90 = 360

29



GEOMETRY (THE FOURTH DIMENSION)

Read over these questions before watching the �lm on the fourth dimensnion. As you watch the video of
Dr. Edward Burger of Williams College explaining the fourth dimension, keep the following questions in
mind, and �ll in the answers as you hear them - or after the video if necessary. If you wish to watch the
clip again, it is at: http://www.baylor.edu/player/index .php?id=100412&gallery id=4627

What do mathematicians do when they run into a hard problem?

What bene�ts would there be medically to being able to accessthe fourth dimension?

List two other things you could do in the fourth dimension tha t are not possible in the third dimension.

In the works of art that Dr. Burger shares at the end of his lecture what ideas have painters been able to
represent using the fourth dimension?

Dr. Burger explains the fourth dimension, but he says this isn't really what his talk is about. What does
he say his talk is actually about?
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FOURTH DIMENSION WRITTEN SUPPLEMENT

As we saw in class the fourth dimension comes in two `avors,'that of time and that of space. This
supplement will focus on the fourth dimension of space. Thiscan be a hard concept for our minds to
comprehend because we only experience 3 spatial dimensionsor directions: up/down, left/right,
forward/backward. Any other directions we experience are just combinations of these. By its very nature
(and name!) the fourth dimension is something that is beyond thethree dimensions with which we are
surrounded all our lives.

Even though we don't experience a fourth dimension of space,we can learn about it and explore it by using
mathematics and logical reasoning. For the dimensions withwhich we are familiar there is a simple way to
build up from one to the next, and we can use this method to begin to think about the fourth dimension.
To build a zero-dimensional, 0D, point into a one-dimensional, 1D, segment, we push the point a distance
away from itself and trace out a segment:

OD 1D

Thus, through movement and tracing we have created a one-dimensional object from a zero-dimensional
object. Continuing, we push the segment in a direction perpendicular to itself and trace out that
movement to create a two-dimensional square:

1D 2D

Continuing in this way we can move from two dimensions to three dimensions. This time we push the
square in a direction perpendicular to itself and trace out its path:

2D 3D

Our eyes are trained to see the image on the right above as a cube, but, of course, it is really not a cube. It
is a at drawing on a at piece of paper (or on a at computer scr een). To create a real cube out of a
square we would have to push it up out of the screen, but we cannot do that so we represent that direction
using diagonal lines. It's something we've seen enough thatwe've come to accept it.

So in going from a line segment to a square we went in a perpendicular direction (at 90o angles) to what
was there, and in going from a square to a cube we went in a perpendicular direction to what we had
already (even though the lines we used to trace look diagonalrather than perpendicular, we know the
image is supposed to pop o� the page, perpendicular to the other lines). We're up to three dimensions. In
order to create a four-dimensional cube, also known as a hypercube, we need to push our cube in a
direction perpendicular to all the others we have used so far.

Where is that direction?

It is a direction we cannot see or physically �nd, just as a 2-dimensional creature living in a world that is a
at plane would have no idea where the third dimension is and would not be able to physically create a
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cube. However, we can use the process of tracing we've been using all along in order to create a diagram of
four-dimensional cube. To do so, we `push' our cube in a direction perpendicular to the others; though we
cannot physically do this we can represent it with diagonal lines as we did in going from square to cube.

3D 4D

The cube is already a bit of a stretch, but since we are familiar with cubes in real life we can immediately
recognize the representation of one on a at surface. The 4D cube, or hypercube, on the other hand, is not
something we are familiar with, so, though this drawing helps a bit in getting the idea, we're pretty far
removed from anything we can truly visualize.

There are a couple of other ways of approaching this that alsoinvolve building up from a cube. Another
way to represent a cube is to imagine looking into it as if it were a box:

You know from your experience with cubes and boxes that the square that seems to be in the middle (or
on the `inside') here isn't really on the inside, nor is it really smaller than the other square. It's just a
matter of perspective. If this cube is a box you are looking into, then the bottom is farther away than the
top, and therefore appears smaller. Also, you know that a cube has 6 square sides, but this shape appears
to only contain two squares. The four other shapes seem to be trapezoids with slanted sides but this is an
illusion due to perspective as well. All of the closed �guresin this cube actually represent perfect squares.

We can take a similar approach to a hypercube. Here is the result:

Here too it looks like we have a smaller shape inside a larger shape and as if we have slanted shapes around
the inside, but this is not the case. The fact that one cube looks smaller is again a matter of perspective. It
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is simply further away. The shapes with slanted lines aroundthe `inside' are actually cubes. This image is
of the same 4D shape as you see at the top of the page but just from a di�erent perspective.

Here is one other option in terms of thinking about the construction of a hypercube based on the
construction of a cube. If we wanted to make a paper cube by cutting a model out of a piece of paper and
taping sides together, we could use the image on the left in order to accomplish this:

If we wanted to make the model cube, we would just cut out the �gure on the left, and fold the sides `up'
o� the at plane of the paper and tape them together. This makes perfect sense to us, but to a creature
living in 2 dimensions it would be impossible to do and even pretty hard to imagine because he would have
no concept of the direction (or dimension) `up' o� of the plane. In terms of making a genuine model of a
4-dimensional cube, we �nd ourselves in the same situation as the atland creature. We could make our
hypercube IF we could �gure out where the direction is in which we have to fold it! But we live in the 3rd

dimension, so we don't have enough space in our space, so to speak.

12) Although we cannot \�t" a 4-dimensional (or 5-dimension al) object into our 3-dimensional world, we
can use logic and mathematical patterns to discover what higher dimensional objects are like. Just as a
cube is a 3-dimensional analog of a square, a hypercube is a 4-dimensional analog of a cube, and a
hyper-hypercube is a 5-dimensional analog of a cube. Use logic based on the lecture, the video, and these
materials, and use the pattern below to determine how many vertices (i.e. corners), edges (i.e. line
segments), faces, cubes and hypercubes are in each of the objects whose rows have been left blank for you
to �ll in.

# of # of # of # of # of # of
vertices edges faces cubes hypercubes hyper-

hypercubes
point 1 0 0 0 0 0

segment 2 1 0 0 0 0
square 4 4 1 0 0 0
cube 8 12 6 1 0 0

hypercube
hyper-hypercube

13) Time is sometimes looked at as a fourth dimension. Dimensions are sometimes called `degrees of
freedom.' We do have freedom of movement in our 3 spatial dimensions: left/right, forward/back, up/down.
If time is a dimension like these others it seems like we should be able to move freely in time as well { that
is, it seems we should be able to travel in time. For this problem answer parts (a) and (b) on the next page.
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(a) Do you think time travel will ever be possible? Why or why not?

(b) Imagine the possibilities of time travel. If you were given one opportunity to travel in time, would
you travel to the past or the future? Why? What would you do?
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GEOMETRY (FRACTALS)

INTRODUCTION TO FRACTALS

In-Class Activity

Fractal Geometry involves dynamic processes on shapes - very unlike the way you interact with shapes in a
standard high school geometry class. One way to generate fractals is to begin with a standard geometrical
shape and to make a change that you then replicate over and over at smaller and smaller scales. The initial
shape is called aninitiator and is considered to bestage 0. The change is represented in the next stage,
stage 1 , and is called thegenerator.

In order to understand and work well with fractals you need to develop a vision for what is being done at
each stage and for how the sizes of the component shapes of each stage (perimeter and area) are related to
the size of the �gure in the stage 0, your initial �gure. This i nvolves a great deal of work with fractions and
just having a sense of fractions.

stage 0

initiator

stage 1
generator

stage 2

In the image above you see the initiator and the generator. The initiator, the original large square, was cut
twice on each side - making it actually a 3� 3 grid. Then the middle square of that grid was removed.

Q1: How many solid squares are there in stage 1?

Q2: In comparison to the original square, what size are the squares in stage 1?

Q3: Compared to the original, what length are the edges of thesquares in stage 1?

TASK 1: Draw stage 2 by doing to each one of the squares in stage1 what was done to the original square.

Q4: How many solid squares are there in stage 2?

Q5: In comparison to the original square, what size are the squares in stage 2?

Q6: Compared to the original, what length are the edges of thesquares in stage 2?
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stage 0

initiator

stage 1
generator

stage 2

In the diagram above your task is to understand what took place between stage 0 and stage 1 and to
repeat that process on all the squares remaining in stage 1 inorder to get stage 2.

*************************************************** ***********************

Above you see stage 0 through stage 4 of the fractal known as the Sierpinski Gasket. Answer the following
questions about this shape.

Q1: In comparison to the original triangle, what size are thetriangles in stage 1?

Q2: Compared to the original, what length are the edges of thetriangles in stage 1?

Q3: How many solid triangles are there in stage 3?

Q4: In comparison to the original triangle, what size are thetriangles in stage 3?

Q5: Compared to the original, what length are the edges of thetriangles in stage 3?

Q6: How many triangles are there in stage 4?

Q7: In comparison to the original triangle, what size the triangles in stage 4?

Q8: Compared to the original, what length are the edges of thetriangles in stage 4?

Q9: What pattern do you see in terms of triangle size and edge size and in terms of number of triangles as
you go from one stage to the next? Write out your �ndings, briey, below:
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FRACTALS: PERIMETER, AREA, ETC.

In-class Activity

Today we will be exploring how to �nd the perimeter and area of fractals. Images have provided for you
in order to make your work easier. We will also look at `deconstructing' fractals, that is we will be looking
at starting with a stage 2 image and determining the initiator and generator that gave rise to it, rather
than beginning with the initiator and generator and �nding s tage 2. This `deconstruction' is actually more
useful in the real world because we are typically looking at shapes and trying to �nd a rules to model
them. Additionally we will consider non-linear fractals, what they are and how they are created. The pages
included for this in-class activity are pages 35-40. With the exception of page 40 if we do not �nish in class,
�nish these pages as homework.

CANTOR SET

LENGTH:
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SIERPINSKI CARPET

stage 0

initiator

stage 1
generator

stage 2

AREA:

PERIMETER:
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KOCH SNOWFLAKE CURVE

AREA:

PERIMETER:
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SIERPINSKI GASKET

AREA:

PERIMETER:
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DECONSTRUCTION

stage 0

initiator

stage 1
generator

stage 2

stage 0

initiator

stage 1
generator

stage 2

stage 0

initiator

stage 1
generator
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NON-LINEAR FRACTALS

All fractals share the same properties in terms of being the result of an in�nite process of iteration,
displaying detail on all levels, exhibiting self-similarity, etc. But as you can see from the images below,
non-linear fractals can look quite di�erent from the linear fractals we have been studying. These images
give you an idea, but you might want to search online in order to �nd images like these in color. The
images you see below are all taken from the fractal known as the Mandelbrot Set.

Before exploring the above images further I'll give some explanation of the process of their creation using a
number-line and real numbers, so be sure to get that in your notes. For this particular image we use an
iteration of an equation rather than an iteration of a shape, and we use the complex plane rather than a
Cartesian coordinate system, which means we use complex numbers and not just real numbers. This may
sound pretty complicated, but the process is quite simple, actually. This set, which is so complicated as to
have been called more complex than the universe itself (because this mathematical shape has in�nite
resolution), comes from the following short equation:

z = z2 + c

The letters z and c stand for complex numbers. We also setz to zero to begin with, and we choose a point
c in the plane to iterate. This gives us a newz, which we plug in, and we continue to use our originalc
until we know the `behavior' of the point. We'll do some examples together to see how this works, and we'll
look at some images together to illustrate this as well.

The complex plane looks like a Cartesian coordinate system,but instead of each point representing an
ordered pair, each point is a single complex number, where the horizontal axis corresponds to the real part
of the number and the vertical axis corresponds to the imaginary part of the complex number.

Re

Im
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GEOMETRY (FRACTALS) - TEXT AND EXERCISES

As part of our geometry unit we are studying fractals. Our text-book presents this work di�erently in some
ways than I would like you to approach it, so I have created thepages in this supplement to help you in
your work based on my lectures. Your book remains a good support to you in this section, and you should
read the related sections there. The major di�erence is thatin the book you are asked to look at fractals at
a �nite stage, but I ask you to take it all the way to in�nity, an d, believe it or not, that is easier! Another
di�erence is that I will be considering the �rst stage of a fra ctal to be stage zero (which is the most common
approach), but your book calls it stage one. In the followingthree pages you will �nd de�nitions, comments,
and, for reference, a re-working of what we did on the Sierpinski Gasket

FRACTAL GEOMETRY is a dynamic branch of geometry in which sha pes are created by continual change
through the following of a speci�c rule that is applied over and over. It has been called the geometry of
nature, and it has many applications in a variety of �elds from science to industry to conservation to
medicine to art { as we will see in class.

stage 0

initiator

stage 1
generator

stage 2

TERMS (for use with linear fractals) :

INITIATOR : The initiator is the starting shape and is also know as `stage 0.'

GENERATOR : The generator is the rule to be carried out and is also known as `stage 1.'

The fractal shown above is known as the SIERPINSKI CARPET. Its initiator is a square, and the
generator is the process of cutting each side of the square into 3 equal segments in such a way that the
shape is like a tic-tac-toe board. This process results in 9 smaller squares, but then the one in the middle is
removed leaving 8. This process is then done again on each of the eight remaining squares. At each stage
the number of squares in the �gure increases, and the size of each of these squares decreases.

At each �nite stage you don't have a true fractal, only a pseudo-fractal. A true fractal is the result of this
process being carried out in�nitely many times. Although we cannot physically create a true fractal, with
mathematics we have the power to determine the properties ofthe true fractal.

Here are the things we'll be concerned with in working with linear fractals:

� determining the self-similarity dimension of a fractal

� determining perimeters, areas, and volumes of given fractals

� constructing stage 2 of a fractal from a given initiator and generator

� �nding the initiator and generator given a later stage of a fractal
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PROPERTIES OF THE SIERPINSKI CARPET:

1) SELF-SIMILARITY DIMENSION: In class we discovered that t he formula for �nding self-similarity
dimension is

D =
logN
logP

Where D is the dimension,N is the number of smaller parts similar to the original shape,and P is the
number of pieces each edge is cut into. For the Sierpinski Carpet (see image on previous page), the number
of pieces each edge (side) is cut into is 3 and the number of resulting smaller copies of the original is 8, so
the self-similarity dimension is

D =
log 8
log 3

= 1 :8927

2) PERIMETER: In order to make things as easy as possible, let's consider the length of one side of the
original square to be 1 unit. The original perimeter is then 4units. The perimeter of a fractal is the sum of
the lengths of all edges, both outside and inside, so at stage1, we have the original 4 units still on the
outside, but we have added line segments on the inside: 4 morelengths each with a measure of a third of a
unit around that inner removed square, so the perimeter in units is now the original outer perimeter of four
units combined with the new inner perimeter of 4� 1

3 = 4
3 units as shown below:

4 +
4
3

=
16
3

or 5
1
3

In stage 2 each of the small, newly added segments around the smallest interior squares is one-third of
one-third the length of an original side { or one-ninth of a unit. We have added four small segments in each
of the eight squares, so we have four times eight or 32 new segments that are each one-ninth of a unit.
Therefore our perimeter in units is now

4 +
4
3

+
32
9

=
80
9

or 8
8
9

The perimeter is increasing at each stage. What happens to itwhen we have carried out this process
in�nitely many times and arrived at the true fractal? In orde r to determine that we need to extend our
series a bit further. Notice that at each stage the size of thesegments is one-third their length at the
previous stage, so our denominators will be 1; 3; 9; 27; 81; 243; 729; : : :. Also notice that at each stage
beyond the �rst we have 8 times as many squares to remove the centers from. This means that beyond
stage one we will multiply by 8

3 each time to get the next number in the series.

4 +
4
3

+
32
9

+
256
27

+
2048
81

+
16384
243

+
131072

729
+ : : :

OR

4 +
�

4
3

+
32
9

+
256
27

+
2048
81

+
16384
243

+
131072

729
+ : : :

�

In either representation of the series we can see that the numbers we are adding each time are getting
larger and larger, so the sum is in�nite. Therefore this shape has an in�nitely long perimeter. In the
second representation, however, we can support this a little more clearly mathematically using an idea you
learned in algebra. Inside of the parentheses, starting with the number 4

3 , you get to the next number by
multiplying by 8

3 over and over. This series inside the parentheses is a very special type of series known as
a geometric series . Since the common ratio, 8

3 , is greater than one, the sum is in�nite. (See Appendix 2
of this text if you need a review of the algebra of this type of series.)
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3) AREA: We work with area in a manner similar to perimeter. We start with an initial area and then add
or subtract the appropriate amount as we go from stage to stage. In the case of the Sierpinski Gasket, we
are removing area from one stage to the next, so we will be subtracting. Assuming again that the length of
an edge at stage 0 is one unit, we begin with an area of 1 square unit. In stage one, by cutting each edge
into three equal pieces, we have cut the square into 9 equal smaller squares and then removed one. Each of
these small squares is therefore one-ninth the size of the original square, so at stage one we have an area in
square units of

1 �
1
9

At the next stage we've cut the eight remaining new smaller squares into ninths and removed one from
each of these, so we've removed 8 little squares that are eacha ninth of a ninth or 1

81 the size of the
original square. We now have an area in square units of

1 �
1
9

�
8
81

From here on out we are creating 8 new small squares each time for every little square in the previous
stage, and each of these smaller squares will be one-ninth the area of each square in the previous stage, so
we are multiplying the top of our fraction by 8 and the bottom b y 9. The result is

1 �
1
9

�
8
81

�
64
729

�
512
6561

�
4096
59049

� : : :

OR (by inserting parentheses and factoring out the negative):

1 �
�

1
9

+
8
81

+
64
729

+
512
6561

+
4096
59049

+ : : :
�

The result is a little harder to determine here than it was with perimeter. The fractions we are subtracting
are getting smaller and smaller, but what is the �nal result? Here too geometric series comes in handy.
Inside the parentheses we have an in�nite geometric series.The �rst term is 1

9 , and the common ratio is 8
9 .

Because the absolute value of the common ratio is less than one, we can �nd the sum of what is inside the
parentheses. Recall from algebra that the formula in this case is

S =
a

1 � r

where S is the sum, a is the �rst term, and r is the common ratio. Ignoring the 1� that is out front for
now, and only focusing on the in�nite geometric series in theparentheses, we have

S =
1
9

1 � 8
9

=
1
9
1
9

= 1

Inserting this in the place of the parentheses, we have 1� 1, which is zero. The area is 0 square units.

RECAP: In the Sierpinski Carpet we have a rather unusual shape, one that has dimension 1:8927 and
in�nite perimeter but zero area. With most linear fractals, to �nd perimeter, area and/or volume, you w ill
need to look for an in�nite geometric series. Often the series will not include the �rst term or the �rst or
second term. You will need to consider how much smaller the pieces are getting each time and by what
ratio they are increasing or decreasing in order to �nd the terms in your series. It comes down to two
things:

� knowing how fractions work (things like the fact that a third of a third is a ninth) and being able to
use that to compare the size of the smaller pieces at each stage to the size of the original piece; this
will give you the bottom of your fraction (if a geometric series is involved).

� being able count how many pieces have been added or subtracted or acted upon (depending on what
type of fractal you have) from one stage to the next, and �nding a pattern for this couting; this
number will go on top of your fraction (if a geometric series is involved).
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The image below is the Mitsubishi Gasket Fractal. Questions14-22 refer to this image.

stage 0 stage 1 stage 2

14) Into how many pieces was each edge of the original shape cut?

15) How many smaller copies of the original triangle are there in stage 1 (the generator)?

16) What size is each smaller copy in stage 1? That is, what fraction of the original triangle is each smaller
triangle you see in stage 1 (the generator)?

17) How many smaller copies of the original triangle are there in stage 2?

18) What size is each of these smaller copies in stage 2? (Thatis, what fraction of the original triangle is
each smaller triangle that you see in stage 2?)

19) Based on our in-class discussion of self-similarity dimension and what it means - and the fact that the
Mitsubishi Gasket begins as a 2-dimensional triangle that then has pieces removed over and over - what
would you estimate the self-similarity dimension of this fractal is?

20) Find the actual self-similarity dimension of the Mitsub ishi Gasket. (HINT: Use your answers to #14
and #15 and the formula for the dimension of a fractal). How does this compare to your estimate?
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21) Find the perimeter of the Mitsubishi Gasket Fractal. (HI NT: Pretend each side of the original triangle
has a length of one unit so that the perimeter of the original triangle is 3 units. Determine how many new
segments are added to the inside at each stage and how long they are, then add the new length to the
original. Do this as you go from stage to stage and then look for a geometric series to form. In looking for
the series, ignore the �rst term of your addition. What does the ratio tell you? See Appendix 2 if you need
to review the algebra of series.)

22) Find the area of the Mitsubishi Gasket Fractal. (HINT: Pr etend the original triangle has an area of one
square unit. Determine how much area is removed from one stage to the next by considering the size of the
pieces removed and the number of the pieces removed. Look fora geometric series. In looking for the
series, ignore the �rst term of your expression. See Appendix 2 if you need to review the algebra of series.)
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23) The initiator (stage 0) and generator (stage 1) below arefor the SANDERS ARROWHEAD
FRACTAL. This fractal is very similar to the Sierpinski Gask et, but in this case it is the bottom left-hand
square that has been removed rather than the center square. Here too there are 8 new smaller squares
created as you go from initiator to generator. So, the rule isto remove the bottom left-hand one-ninth of
each of the newly created smaller squares each time. Draw stage 2 of the Sanders Arrowhead Fractal.
Problems 24-28 also refer to this fractal.

stage 0

initiator

stage 1
generator

stage 2

24) Into how many pieces was each edge of the original shape cut?

25) How many smaller copies of the original square are there in stage 1?

26) What size is each of these smaller copies in stage 1? (Thatis, what fraction of the original square is
each smaller square that you see in stage 1?)

27) Based on our in-class discussion of self-similarity dimension and what it means - and the fact that the
Sanders Arrowhead Fractal begins as a 2-dimensional squarethat then has pieces removed over and over -
what would you estimate the self-similarity dimension of this fractal is?

28) Find the actual self-similarity dimension of the Sanders Arrowhead Fractal. How does this compare to
your estimate?
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Here is the MENGER SPONGE FRACTAL. It is created by beginning with a cube, dividing it up as you
see below, and then removing the central cube on each face andthe cube in the very center, and then, of
course, repeating this process on each smaller cube at the next stage. Questions 29-36 refer to this
description and to the image below.

29) Into how many pieces was each edge of the original shape cut?

30) How many smaller copies of the original cube are there in stage 1?

31) What size is each of these smaller copies in stage 1? (Thatis, what fraction of the original cube is each
smaller cube that you see in stage 1?)

32) How many smaller copies of the original cube are there in stage 2?

33) What size is each of these smaller copies in stage 2? (Thatis, what fraction of the original cube is each
smaller cube that you see in stage 2?)

34) Based on our in-class discussion of self-similarity dimension and what it means - and the fact that the
Menger Sponge Fractal begins as a 3-dimensional square thatthen has pieces removed over and over - what
would you estimate the self-similarity dimension of this fractal is?

35) Find the actual self-similarity dimension of the Menger Sponge Fractal. How does this compare to your
estimate?

49



36) Find the volume of the Menger Sponge Fractal. (HINT: Use the same thought process as you did for
fractals that began as 2-dimensional shapes. Use what you know about the size of the smaller copies at
each stage and how many of them there are. Begin by assuming the original volume is 1 square unit, and
then subtract the volume that has been removed stage-by-stage. Look for an in�nite geometric series,
remembering that generally the �rst term needs to be left in order to �nd the series.)

Fractals are not always created by removal (as you know by having seen the Koch Snowake Curve in
class). The fractal imaged below corresponds to questions 37-41.

stage 0
initiator

stage 1

generator

stage 2

37) How many smaller squares were added to the original shape?

38) What size is each of these smaller copies in stage 1? (Thatis, what fraction of the original square is
each smaller square that you see in stage 1?)

39) Notice that a square is being added to the center of each segment each time. How many new segments
are created from a previous segment at each stage?

40) How will you determine how many new squares will be added at stage 3?
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41) Using a process similar to what you've done with previousproblems of this sort �nd the area of the
fractal pictured on the previous page.

42) Create a fractal that has a self-similarity dimension of1.5.

HINT: Use our formulas AND your knowledge of properties of logarithms from algebra. Recall that

(number of pieces a side is cut into)dimension = number of smaller copies of original

That is:

P D = N

Therefore D (dimension) is:

D =
logN
logP

Find numbers that will work and then create a shape using those numbers. Use the grids below to draw
stages 0-2 of your fractal. Additional hint: I recommend beginning with a shape that is a square as it is the
easiest shape to work with!

stage 0

initiator

stage 1
generator
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43) Using the initiator and generator below, do the following four things. In a clearly organized and clearly
labeled fashion, show your work in space at the bottom of thispage.

(a) Draw stage 2 of this fractal on the grid provided.

(b) Find the dimension of this fractal.

(c) Find the perimeter of this fractal.

(d) Find the area of this fractal.

stage 0

initiator

stage 1
generator

stage 2
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44) In the natural world, growth often takes place by repetition on smaller and smaller scales. Think of a
tree. The trunk splits into large boughs which split into bra nches which split into twigs. All along the tree
is growing, and at each stage the shape is similar but merely at a smaller scale. This is exactly what linear
fractals do, and it is why they are so useful in modeling the natural world. In order to do �nd a fractal
that mimics a shape in the natural world (something that is often done in movie special e�ects) we must
work backwards from the natural fractal to an initiator and g enerator that will give us that result. That's
what this problem is about. Given stage 2, �nd the initiator a nd the generator.

stage 0

initiator

stage 1
generator

stage 2

A FEW COMMENTS ABOUT NON-LINEAR FRACTALS:

The fractals we have looked at so far fall into the category of̀ linear fractals.' Linear fractals are those for
which if you take a small piece of the �nal result and magnify it you will get an exact copy of the original.
They display perfect self-similarity. These fractals can be created in many ways, but the method we have
used of beginning with a shape and then adding or removing smaller copies of the original over and over is
a very commonly used method. Non-linear fractals display self-similarity as well (all fractals do), but it is
not perfect self-similarity. Magnifying a small piece will not result in an exact copy of the whole.

All fractals are the result of a process of in�nite iteration . For our linear fractals we iterated a geometrical
rule on a shape. Many non-linear fractals are created by iterating an equation involving complex numbers
on the complex plane. The most famous of these is called the Mandelbrot Set (see image below).

There are many beautiful and interesting fractals that are created in this way, including Newton's Method
Fractal and Julia Sets. Go to youtube and search for \Mandelbrot Set Zooms." You may also want to
google these other terms to �nd these sorts of images online.As you watch a zoom of the Mandelbrot Set
realize that the parts in black are the set itself; the points in black do not grow without bound under
iteration (something I'll explain in class), but the points that are colored get larger without bound under
iteration. The point is that parts of this fractal in�nitesi mally close to each other behave in di�erent ways,
even though it seems like common sense to think that points close together should behave the same way.
This is called sensitive dependence on initial conditions. It is something we see in chaotic processes like the
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ow of turbulent uids (water in a river) or weather. Fractal s have been called pictures of chaos, and for
that reason they work well for modeling and understanding many aspects of the real world that we could
not model or understand with classical geometry. There are many such applications. A few of them are
discussed below.

APPLICATIONS:

Fractals can be used in many �elds. Fractals are frequently used in special e�ects in movies { the �rst of
these being the creation of the Genesis Planet in Star Trek II: The Wrath of Khan (1982) { a more recent
example being the lava scene in Star Wars III: Revenge of the Sith (2005). Fractal geometry is used in
image compression; this allows you to upload images quicklyon your computer or i-phone. Fractals are
used in creating e�ective antennae for cell phones. They areused in studying the spread of disease in
epidemics and in creating devices to help alleviate seizures in people with epilepsy. They are being studied
for use in early prediction of cancer. The have implicationsfor weather predictions. They've been used to
study and decrease static in phone lines and to determine patterns in the distributions of galaxies in the
universe. Your body is made up of fractals { neurons, circulatory system, pulmonary system, intestines,
brain surface, etc. Much of the natural world from shapes of trees and clouds to shapes of coastlines can be
modeled using fractal geometry. It has been used in conservation e�orts relating to determining how much
carbon dioxide a forest removes from the atmosphere. Fractal geometry has also been used in studying
trends in the stock market. There are many other applications as well!
Fractal geometry is a relatively new branch of mathematics,math being a �eld that is always growing!
Although it is rather new (1980s), it has begun, surprisingly enough for a topic in math, to show up in
popular culture, especially in novels. As you would expect it has made an appearance in sci-�/fantasy
novels such as the work of Piers Anthony (Virtual Mode, Chaos Mode and Fractal Mode). It was also the
impetus for the book and subsequently the movieJurassic Park. It has even made an appearance in a
recent popular Christian novel The Shack. I think as time goes on you will see it more and more in books,
movies, music, etc.
By the way, from your algebra classes you have all the tools you need to understand the concepts behind
non-linear fractals. If you would like to pursue this further, it is accessible by you. I am, of course, more
than willing to point you in the right direction if you'd like to explore further.

45) Given the formula z *) z2 + c, and based on what we did in class,determine whether or not the point
c = � 1 + i is in the set, and give a one sentence description explaining your answer. (IF - and only if - we
did not get time to cover the formula for the Mandelbrot Set in class, then skip this problem.)
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Read over the following questions before watching NOVA's Fractals: Hunting the Hidden Dimension; then
answer the questions as you watch or after you watch. If you need to review the video it can be found online
at http://www.pbs.org/wgbh/nova/physics/hunting-hidd en-dimension.html.

What are some applications of fractal geometry? (List at least 5, and be sure to use full sentences in your
answer.)

What application of fractals most caught your attention, an d why?

Though fractal geometry provides amazing, powerful and widely applicable results many mathematicians
and scientists did not accept this new branch of mathematicsat �rst. Why not?

Which of the 5 characteristics of all fractals that we listed in class did you see in this video? Where did you
see them?
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NUMBER THEORY

46) Below you are given the numerical values of Egyptian Numerals. Use this information and your notes
on the Egyptian Multiplication Algorithm to do the multipli cation problem given below the chart. Do your
work using the Egyptian Method and entirely in Egyptian Numerals.

57



47) Translate 13� 114 into Egyptian; work this problem using the Egyptian algorithm and give your
answer in Egyptian.

48) Write out, in Mayan Numerals, the numbers 1 to 30. Use yournotes, but be resourceful too and realize
you can search online. Make sure, though, that you understand how to create each numeral.

one two three four �ve

six seven eight nine ten

eleven twelve thirteen fourteen �fteen

sixteen seventeen eighteen nineteen twenty

twenty-one twenty-two twenty-three twenty-four twenty-�ve

twenty-six twenty-seven twenty-eight twenty-nine thirty
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49) Write the �rst thirty numbers in base three.

one two three four �ve

six seven eight nine ten

eleven twelve thirteen fourteen �fteen

sixteen seventeen eighteen nineteen twenty

twenty-one twenty-two twenty-three twenty-four twenty-�ve

twenty-six twenty-seven twenty-eight twenty-nine thirty

Conversions of Bases

Converting FROM another base TO base 10 is merely a matter of using `expanded notation' - of just
multiplyin and adding. For instance, in the problem above asking you to write numbers in base three, you
should have come up with the answer 212 as the base three representation of twenty-three. This is because
the �rst three place values for base three are 9, 3 and 1 and because two groups of 9 plus one group of 3
plus two groups of 1 give you twenty-three (as shown below).

2 � 32 + 1 � 31 + 2 � 30 = 2 � 9 + 1 � 3 + 2 � 1 = 23ten

Similarly, considering base �ve, 1324�ve = 214ten because:

1 � 53 + 3 � 52 + 2 � 51 + 4 � 50 = 1 � 125 + 3 � 25 + 2 � 5 + 4 � 1 = 214ten

This process is covered quite thoroughly in section 7.1 of your textbook. What isn't covered there but is
also part of our course is being able to convertFROM base 10 TO another base . As you might
imagine the procedure is exactly the reverse of the procedure you see above. Instead of multiplying and
adding, you divide and subtract. On the next page we considerthis process using one of the examples
above, and then some problems are given for you to do. (This procedure is also covered in your notes.)
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We saw on the previous page that 212three = 23ten by staring with 212three and using expanded notation.
What if we had been given 23ten and asked to convert it to base three? First we would have to consider
the place values in base three: 27; 9; 3; 1. We would look for the highest value that will �t into
twenty-three. In this case it is a 9. Then we see how many groups of 9 go into 23

23� 9 = 2 with a remainder of 5

SO we have 2 in the 9's place. Then we need to take care of what isleft, the remainder. We move down
one place to the 3's place and ask how many 3's there are in 5:

5 � 3 = 1 with a remainder of 2

SO we have 1 in the 3's place. Then we need to take care of what isleft, the remainder. We move down
one place to the 1's place and ask how many 1's there are in 2:

2 � 1 = 2 with no remainder

SO we have a 2 in the 1's place for a �nal result of 212three
This is the process - �nd the highest place value that is not larger than your number. Divide it into your
number; the quotient is the number that goes in that place, and then you repeat this process with the
remainder and the next place value down. Convert the following base ten numbers in to the requested
places; show your work.

50) Convert forty-two into base three.

51) Convert one-hundred �fty-seven into base �ve.

52) Convert three-hundred ninety-eight into base sixteen.

HINT: You can check your answers by converting back the otherway through multiplication and addition!
Did you get these right?!
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PROBLEM SOLVING

PLEASE NOTE: Problems 53-57 are signi�cant \problems!" They are not mere \exercises." We will
resolve them together in class in the last unit we cover in this class, the logic/problem solving unit. Begin
working on them now, though, because they are related to number theory and because you need to try to
wrap your mind around them a bit before we tackle them together! You will be asked problems like this
on the test, so it's very important you work at them on your own in order to develop your problem-solving
skills before we work them together in class.

53) Go to the following link and try to �gure out how the trick w orks. Explain in detail.

http://www.readthemind.com
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54) Do the "Phone Number Problem" below and answer the questions that appear after the problem.

Phone Number Problem

1) Type into your calculator the �rst 3 digits of your phone nu mber (not area code).

2) Multiply by 80 (and hit the = sign).

3) Add 1 (and hit the = sign).

4) Multiply by 250 (and hit the = sign).

5) Add the last 4 digits of your phone number (and hit the = sign).

6) Repeat step 5.

7) Subtract 250 (and hit the = sign).

8) Divide by 2 (and hit the = sign).

QUESTIONS: What is the result?
Are you surprised?
How does this trick work? Write out your answer in detail.
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55) One million light bulbs are controlled by one million switches numbered in order from 1 to 1,000,000.
All switches are in the o� position to begin. Starting at 1, ev ery switch is ipped. Next, starting at 2,
every second switch is ipped. Then starting at 3, every third switch is ipped. (Of course, if a switch was
o�, ipping it turns it on and vice versa). This continues unt il the millionth switch is reached. After all
this, how many light bulbs will be on?
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56) Most or all of us probably remember some letter or number games from childhood. Perhaps you
remember games from long car trips like �nding all the letters of the alphabet on signs or license plates or
games you might hear on the playground like \eenie-meenie-minie-moe" or \I one it, I two it . . . I jumped
over it and you ate it!" One such counting game has the following rules:

This is a two person game, and the winner is the person who says\21." We start with the
number 1, and each of us can count one or two or three numbers ata time."

Just like with \eenie-meenie-minie-moe" there is a way to win every time if you're clever and set it up just
right. Play this game a few times (you might want to keep a record of which numbers each player says),
think about strategy as you play, and then answer the following questions:

1. What strategy will allow you to win every time?

2. How can you win this game in general even if you are countingto a number other than 21 or can
count by groups of more than three numbers?
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57) There are hundreds of patterns in the following triangle. Find as many patterns in it as you can
(including how it is created!). Patterns may be along the rows, columns or diagonals or in di�erent
con�gurations. I have give you a few copies of this over the next few pages so you can try �nding patterns
without having to erase. You may list more than one pattern per page if you would like. At the bottom of
this page I have listed a couple of the patterns and have askedsome questions to get you started �nding
your own.

Here are a few patterns and questions to get you started:

� This triangle has horizontal symmetry.

� There are ones down the left and right sides of the triangle.

� The counting numbers can be found in the second diagonal in.

� If you choose a number in the interior, like the 4 in the �fth ro w down, and you look at the numbers
circling it, the products of alternating numbers are equal - that is: 3 � 10� 1 = 6 � 5 � 1. This works
for the numbers surrounding any cell in the interior.

Here are some questions that might help you in your search:

� Is there anything special about any of the other diagonals?

� What happens if you add up all the numbers in a row and look at the sums of each row?

� Can you �nd a pattern made up of odd numbers?

� Can you �nd the Fibonacci Numbers in the triangle?

� What are the �rst few powers of 11? Can you �nd them in the trian gle? Do they continue all the
way?

Those are just ideas to get you started. There are many, MANY patterns that can be found in this
triangle! See how creative you can be in your search!
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SET THEORY UNIT

58) Twenty-four dogs are in a kennel. Twelve of the dogs are black, six of the dogs have short tails, and
�fteen of the dogs have long hair. There is only one dog that isblack with a short tail and long hair. Two
of the dogs are black with short tails and do not have long hair. Two of the dogs have short tails and long
hair but are not black. If all of the dogs in the kennel have at least one of the mentioned characteristics,
how many dogs are black with long hair but do not have short tails?

http://www.setgame.com/set/puzzle frame.htm

59) One aspect of Set Theory is counting. The image above is ofa layout of 12 of the cards out of a game
called Set. Each card in the game displays 4 attributes: number, shape, shading and color. Since this
workbook is not in color, you will want to go to the link below t he image to get fully acquainted with the
game. The object of the game is to �nd `sets.' A set is a group ofthree cards for which each of the 4
characteristics is the same for all three cards or di�erent for all three cards. For example, one set would be
three cards that each have three green ovals, but each of the ovals has a di�erent shading (solid, open and
lined). Another set would be one in which all characteristics are di�erent, for instance one card has one
solid red diamond, another card has two open purple ovals, and the third card has three lined green
squiggles. (Go to the link and play the game so that this will make more sense)How many cards are
there in this game, andhow many distinct sets of 3 cards are possible? Remember there are 3 colors, 3
shadings, 3 shapes, and 3 numbers. Please note that the number of cards in the game is not just the 12 you
see above. That's just one `deal.' Also, the number of possible 3-card sets is not just the total number of
cards divided by 3. Think more deeply than that. :-)
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60) Using your notes (the example we did together in class) asa template, prove that the set of whole
numbers is in�nite. For this problem use the set of natural numbers as a proper subset of the whole
numbers.
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61) Compare the number of points in a one-unit-long line segment (let's say the segment on the
number-line from 0 to 1) and the number of points in a cube that has length, width and height of one unit.
Are there more points in one shape than the other? If so, explain using good mathematical logic why this
is true. If there are the same number of points in each, explain using good mathematical logic why that is
true. (Yep, this is super hard and probably really hurting your brain, as many problems in this class surely
have! But remember: Nothing we study is a waste. But the precision of math helps re �ne how
we think in a very special way. This might be a good time to go back to page 4 to remind yourselfwhy
we do this stu�! :-)

62) In the alternate universe known as Cantor's Paradise there are lodgings known at The Hilbert Hotel.
This hotel has in�nitely many rooms. If I arrive and �nd that a ll the rooms are �lled, I know they can still
accommodate me because they can simply have each guest move down one room, leaving room one open
for me { because the person who was in room #1 is now in room #2. In mathematical terms the guest in
room n moves to roomn + 1. But what if the hotel is �lled and a bus with in�nitely many passengers pulls
up? Can they all get rooms or will some of them or all of them need to be turned away? Give your answer
and explain it using good mathematical logic. Notice that with both the bus and the hotel you are working
with the lowest level of in�nity - that of the counting number s, not the reals.

(Please note the answer of moving everyone 1 room over with then + 1 rule given above is for ONE
PERSON! The answer to moving in�nitely more people in is not to move one by one by one like that. How
can you move in�nitely people in with one application of a single di�erent rule applied once?)
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LOGIC UNIT

63) Problem solving is an activity that requires logic. You've done lots of that in this class. For this
problem, now that we have had a lesson on induction and deduction, revisit problems 53-57 and determine
if your work on them involved inductive or deductive reasoning.

53 was

54 was

55 was

56 was

57 was

64) How many people are in class today? Write your answer in this blank, so you don't forget later
. If everyone in class today were to shake hands with everyoneelse in class (one-handshake per

pair of people), how many handshakes would there be total?
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LOGIC
IN CLASS ACTIVITY

In the lesson on logical statements we saw that self-reference, such as \This sentence is false" can be a
paradoxical problem. However, as we shall see here, it can also be helpful in creating and solving logic
puzzles. The following puzzles have been taken fromThe Lady or the Tiger? And Other Logic Puzzles:
Including a Mathematical Novel and G•odel's Great Discovery by Raymond Smullyan. How's that for a
book title? Smullyan got his inspiration for these particular puzzles from the short story The Lady or the
Tiger by Frank Stockton - a good read, which you might want to check out if you haven't already.

According to Smullyan, the king of a certain land had also read Stockton's story and decided it was a
perfect way to try his prisoners. He would give each prisonera choice of two doors behind which could be a
beautiful young lady (whom he would then marry if he chose that door), or a hungry tiger (by whom he
would be eaten if he chose that door). Rather than leaving it to random chance, the king decided to post
signs on the doors and to give the prisoner certain facts about those signs.

TRIALS DAY ONE:

As each prisoner was brought out the king explained to him that each of the two rooms he was facing
contained either a lady or a tiger, but that it could be that th ere were tigers in both rooms or ladies in
both rooms.

A) As the FIRST PRISONER faced the two doors he was told of the signs below, \One of them is true,
but the other one is false." If you were the prisoner, which door would you open to �nd the lady?

I

In this room there is a lady,

and in the other room
there is a tiger.

II

In one of these rooms there
is a lady, and in one of these

rooms there is a tiger.
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B) The �rst prisoner solved the puzzle, thus saving his own life. The signs on the doors were then
changed, and new occupants for each room were chosen. This time the signs read as follows. The kind told
the SECOND PRISONER that the signs were either both true or both false. What should the he do if he
wishes to remain alive?

I

At least one of
these rooms contains

a lady.

II

A tiger is in

the other room.

TRIALS DAY TWO:

Both prisoners on the �rst day were able to solve the puzzles.
The king considered this a �asco and decided to make the puzzles
harder for the next day. The king explained to each prisoner that
in the left-hand room (Room I), if a lady is in it, then the sign on
the door is true, but if a tiger is in it, then the sign is false. In the
right-hand room (Room II), the situation is the opposite: a l ady
in the room means the sign on the door is false, and a tiger in the
room means the sign is true. Again, it is possible that both rooms
contain ladies or both rooms contain tigers, of that one room
contains a lady and the other a tiger.

C) The THIRD PRISONER faced the two doors with signs shown below, and knowing the information
above, which choice should he make to save his life?

I

Both rooms
contain ladies.

II

Both rooms
contain ladies.
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D) Same rules apply for the FOURTH PRISONER. Below is what he sees. What should he do?

I

At least one room
contains a lady.

II

The other room
contains a lady.

E) The king was particularly fond of the previous puzzle and this one too! What should PRISONER
FIVE do?

I

It makes no di�erence
which room you pick

II

There is a lady in

the other room.

F) Here are the signs for the SIXTH PRISONER. What should he do?

I

It does make a di�erence
which room you pick

II

You are better o�
choosing the other room.
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Appendix 1: 30-60-90 Triangle

When working with networks we need to be able to �nd lengths ofsides of \30-60-90 triangles," that is
triangles whose angle measures are 30 degrees, 60 degrees and 90 degrees. We can �nd the necessary
formulas by doing two things:

1. considering a regular (equilateral) triangle and cutting it in half

2. using the Pythagorean Theorem,a2 + b2 = c2, to �nd side-lengths

Recall that the total number of degrees in a triangle is 180o. Therefore, an equilateral triangle (all sides
equal, all angles equal) has angles that are all 60o. If we cut an equilateral triangle in half by drawing an
altitude (a line that meets the base at a 90o angle), the result will be a 30-60-90 triangle, because on ofthe
60o angles will remain untouched, the other will be cut in half, forming a 30o angle, and at the base we will
have a 90o angle because of the perpendicular altitude. See diagram below:

half of 60o = 30o

still 60o right angle = 90o

Two of the sides are easy to �nd the measure of. The hypotenuse(longest side) of the 30-60-90 triangle is
length s (the length of the side of the original equilateral triangle). The length of the shortest side is half of
s (because we cut it in half!). We have to use the Pythagorean Theorem to �nd the length of the other

side. When we do that by letting c be s and letting a be
1
2

s, we get that side b is

p
3

2
s

s

1
2

s

p
3

2
s

It's easier to �nd values of certain sides. For instance, if you know the hypotenuse (longest side) is 6 inches,

then you know the shortest side is 3 inches, because it's half. The \medium-length" side is 6 times

p
3

2
s,

which is 3
p

3, which is just a bit trickier to �nd. The hardest situation i s when you know the measure of
the \medium-length" side and have to �nd the others. Realize, though, that whatever the length of that

side is, you just set it equal to it's value, which is

p
3

2
s, and solve fors by getting the variable by itself. For

instance, if the \medium-length" side is 10 inches, then:

10 =

p
3

2
s SO (by multiplying by reciprocal on both sides)

2
p

3
� 10 = s AND

20
p

3
= s
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Appendix 2: In�nite Geometric Series

In algebra we look at sequences and series. The two we focus onmost are algebraic and geometric. In this
class the most important of these to us will be the in�nite geometric series. An in�nite geometric series is a
sum of terms that have a common ratio. For example:

An in�nite geometric series with �rst term 3 and common ratio (multiplier) 2 would be:

3 + 6 + 12 + 24 + 48 + 96 + 192 + 284 + 568 + � � �

An in�nite geometric series with �rst term 2 and common ratio (multiplier)
4
3

would be:

2 +
8
3

+
32
9

+
128
27

+
512
81

+
1048
243

+ � � �

An in�nite geometric series with �rst term 1 and common ratio (multiplier)
1
2

would be:

1 +
1
2

+
1
4

+
1
8

+
1
16

+
1
32

+
1
64

+
1

128
+ � � �

It's important to know the ratio. If it's not immediately obv ious, divide a term by the one that came just
before it (or think, \What do I have to multiply this term by to get that next one?").

What we'll be especially concerned with in class is the actual sum of the series. If you think about it a
minute, you'll realize that something like the �rst series up there gets bigger and bigger and bigger, and if
we added all the terms (in�nitely many bigger and bigger terms), we'd get an in�nite result. This is also
the case with the second example above, because the ratio is greater than one. However, with the third
example we get a �nite sum, and that sum is 2

1 +
1
2

+
1
4

+
1
8

+
1
16

+
1
32

+
1
64

+
1

128
+ � � � = 2

The formula for �nding this sum in general is:

S =
a

1 � r

where S stands for the sum,a stands for the �rst term, and r stands for the common ratio. This formula
can only be used ifjr j < 1 (remember if the ratio is one or greater the sum is in�nite). Below this formula
is used to show that the sum of the previous series is 2

a = 1 ; r =
1
2

so S =
a

1 � r
becomes S =

1
1 � 1

2

which equals
1
1
2

which is 1�
1
2

which is 1�
2
1

= 2

Another example:

5 +
15
4

+
45
16

+
135
64

+
405
256

+ � � �

Here we have:

a = 5 ; r =
3
4

so S =
a

1 � r
becomes S =

5
1 � 3

4

which equals
5
1
4

which is 5�
1
4

which is 5�
4
1

= 20
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In some of the problems we will work with in this class you will have an expression that has an in�nite
geometric series in it but for which some of the terms are not part of the in�nite geometric series. For
example:

1
3

+
1
4

+
1
8

+
1
16

+
1
32

+
1
64

+
1

128
+ � � �

in the series above we have a common ratio of12 from the second term on, but you can't multiply the �rst
term, 1

3 , by that ratio to get the second term, 1
4 , so the 1

3 is not part of the geometric series. We can use
parentheses to split this up, however, so that we separate out the term or terms that are not part of the
geometric series:

1
3

+
�

1
4

+
1
8

+
1
16

+
1
32

+
1
64

+
1

128
+ � � �

�

To �nd the sum here we then use the formula on the terms in the parentheses and add the extra1
3 to that

when we are done. In this casea = 1
4 and r = 1

2 , so we have

1
3

+
�

1
4

+
1
8

+
1
16

+
1
32

+
1
64

+
1

128
+ � � �

�
=

1
3

+
1
4

1 � 1
2

=
1
3

+
1
4
1
2

=
1
3

+
1
4

�
2
1

=
1
3

+
1
2

=
5
6

In many examples you will work with subtraction will be invol ved. Don't forget that when you factor a
negative out of parentheses it changes the sign of all the terms in side, so for the series below we see that
the common ratio is 1

5 and that we get from one term to the next by multiplying by this common ratio
with the exception of the term 1 out front.

1 �
2
3

�
2
15

�
2
75

�
2

375
�

2
1875

� � � �

We need to rewrite this as:

1 �
�

2
3

+
2
15

+
2
75

+
2

375
+

2
1875

+ � � �
�

Notice how all the signs inside the parentheses changed fromminus to plus. Notice also that in parentheses
we have an in�nite geometric series witha = 2

3 and r = 1
5 . Here is how we �nd the sum:

1�
�

2
3

+
2
15

+
2
75

+
2

375
+

2
1875

+ � � �
�

= 1 �
2
3

1 � 1
5

= 1 �
2
3
4
5

= 1 �
2
3

�
4
5

= 1 �
8
15

=
7
15

REMINDERS: Sometimes you need to leave more than one term out, so be sure you can recognize a
geometric series (you need to be able to consistently multiply by the same thing over and over from one
term to the next). Remember also that you cannot use the formula unlessjr j < 1. Sometimes this actually
makes things easier. If you are multiplying by a ratio that is greater than 1, then you immediately know
the sum is in�nite, and you can just state that without doing a ny more math on that problem!!

Examples of this are worked out in the context of fractals in this text on pages 30 and 31 where we are
looking at the perimeter and area of the Sierpinski Carpet.

79



Appendix 3: Complex Numbers

For most of your work in algebra, if you had an equation likex2 = � 1 you would write that there is no
solution because you cannot take the square root of a negative number. At some point, however, you were
told this isn't entirely true. It isn't that there's no solut ion, it's that there's no real solution - and there is
a di�erence! Real numbers are the numbers you �nd on the number-line, but they aren't the only numbers
there are.

One solution to x2 = � 1 is that x = i where i is called the \imaginary unit" and is equal to
p

� 1.

SO:

i =
p

� 1

AND THEREFORE:

i2 = � 1

There is nothing less \real" or more \imaginary" about this n umber than there is about numbers such as 5
and 1

2 . The labels are rather unfortunate, but . . . ah well . . . The \r eal" numbers you've worked with
most of your life are really only part of the story. All of them are actually complex numbers, but you just
usually leave o� the imaginary part. That is:

5 is the same thing as 5 + 0i

and

�
3
4

is the same thing as �
3
4

+ 0 i

So the imaginary part has always been there; it's just usually invisible. As stated above, there is nothing
less \real" or important about complex or imaginary numbers. They are used in many applications,
including electrical engineering and \rocket science" andmovie animation and the study of uid ow and
many other things. You've come across them before when you've used the quadratic formula to solve
quadratics such asx2 + 4 x + 13.

Arithmetic with complex numbers works very much like operations on binomials, except that you have to
remember that i2 = � 1. For instance:

Just as (x + 2) + (3 x � 5) = 4 x � 3 so also (i + 2) + (3 i � 5) = 4 i � 3

You have to be a little more careful with multiplication beca use of the wholei2 = � 1 thing:

Just as (x+2)( x+3) = x2+5 x+6 so also (i+2)( i+3) = i2+5 i+6 but this is � 1+5i+6 which is 5i+5

Technically there are some bigger issues to worry about whendividing, but we're not going to divide
complex numbers in this class, so don't worry about it. (If you're curious it has to do with rationalizing the
denominator, i.e. not letting there be an i in the bottom in your answer.)

In your algebra work you've done a lot of graphing - putting points on number-lines and putting points on
the x-y plane. You've never come across an imaginary or complex number on either of those items.
Number-lines and the x-y plane consist only of real-number coordinates. But that doesn't mean you can't
graph complex numbers. They are graphed on a plane, but a complex plane rather than the standard x-y
plane. The vertical axis is the imaginary axis, and the horizontal axis is the real axis. So to graph 3 + 2i ,
you go to the right 3 and up 2 and plot the point. Realize that unlike with the Cartesian coordinate
system (x-y plane) that you are used to, the point on the complex plane represents one number instead of
two. This is shown on the next page.
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Below is a complex plane (also known as a Gaussian Plane or Argand Diagram). The vertical axis is the
imaginary axis, and the horizontal axis is the real axis. Thepoint plotted here is the one we were
discussing on the previous page.

�

Im

Re

It is this sort of plane on which the fractal THE MANDELBROT SE T (see page 39) is graphed. If you
search online you will �nd colorful versions of the M-SET. The set itself is actually the black part only. To
graph the set you iterate points through an equation in which you square and add over and over. If you
have a point like 0 + 0i , no matter how much you square it and add it to itself you keep getting 0 + 0 i .
Because this point does not \move" far away from where it started under this process of iteration, it is
colored black and is part of the set. Iterating i (that is 0 + i ) using the equation below gives us the
following results: i then � 1 + i then � i then � 1 + i then � i then � 1 + i then � i , and so on. In this case
we don't get the same number over and over, but the point is cycling between values, so it too is colored
black and is part of the set. On the other hand, the number 2 (that is 2 + 0i ) gives us 2 then 6 then 38
then 1446 then 2090918, and so on. The value here is increasing without bound, so this point is assigned a
color other than black, and that color is chosen depending onhow fast the point is getting big.

What I've given you above is a very rough description of how the M-SET is created, but if you're interested
in pursuing this that and some internet searches will get yougoing. I'd be happy to explain further as well.
The really amazing thing to realize about this set has to do with the border. Notice that points
in�nitesimally close to each other behave di�erently - one shooting o� to in�nity while the other stays
bounded. This relates to something calledsensitive dependence on initial conditionsand is why fractals
have been called the images of chaos and is why they can be usedin modeling and studying chaotic events
in the real world - such as weather systems, uid ow, epileptic seizures and many other things.

The equation I used to get the numbers in the lists above is:

z = z2 + c

The value of z always starts out at zero, andc is a point you have chosen on the plane. Squarez, add c,
and you're result is the new z. Plug it back in square z, add c, and you're result is the new z. Plug it back
in square z, add c, and you're result is the newz. ETC! If the process stays bounded, color thec you used
black, if not color it something other than black. Again, tha t's just a start, but there's lots of info on the
internet, and I'd be happy to work with you too!
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